APPENDIX B

Outlet Field Data

B1 – THC Measurements and Calibration Data

EMISSION RATE CALCULATION SHEET TOTAL HYDROCARBON EMISSIONS

Client/Site:

Global

Run #:

Run 1

Source:

RTO Outlet

Date:

4-Feb-10

START TIME :

6:45

END TIME :

7:45

AVERAGE CONCENTRATION **5.2** PPM AVERAGE FLOW RATE 6,665 WSCFM MOLECULAR WEIGHT (Propane) 44.09 g/mole

mg/m3 =

(MW * PPM) / (24.055 l/mol. PPM) =

9.55 mg/m3

mg/SCF = (mg/m3) (m3/35.31 SCF) =

0.27 mg/SCF

lb/SCF = (1 lb/ 4.536E+5 mg) * (mg/SCF) =

5.962E-07 lb/SCF

lb/hr =

(lb/SCF * WSCFM * 60 min/hr)

0.24 lb/hr

EMISSION RATE CALCULATION SHEET TOTAL HYDROCARBON EMISSIONS

Client/Site:

Global

Run #:

Run 2

Source:

RTO Outlet

Date:

4-Feb-10

START TIME:

8:05

END TIME :

9:05

AVERAGE CONCENTRATION	5.8 PPM
AVERAGE FLOW RATE	6,896 WSCFM
MOLECULAR WEIGHT (Propane)	44.09 g/mole

mg/m3 = (MW * PPM) / (24.055 l/mol. PPM) =

10.65 mg/m3

mg/SCF =

(mg/m3) (m3/35.31 SCF)

0.30 mg/SCF

lb/SCF =

(1 lb/ 4.536E+5 mg) * (mg/SCF) =

6.649E-07 lb/SCF

lb/hr =

(lb/SCF * WSCFM * 60 min/hr)

0.28 lb/hr

EMISSION RATE CALCULATION SHEET TOTAL HYDROCARBON EMISSIONS

Client/Site: Source:

Global

RTO Outlet

Run #: Date:

Run 3 4-Feb-10

START TIME:

9:25

END TIME :

10:25

6.8 PPM AVERAGE CONCENTRATION AVERAGE FLOW RATE 6,634 WSCFM 44.09 g/mole MOLECULAR WEIGHT (Propane)

mg/m3 =(MW* PPM) / (24.055 l/mol. PPM) = 12.46 mg/m3

mg/SCF =

(mg/m3) (m3/35.31 SCF)

0.35 mg/SCF

lb/SCF =

(1 lb/ 4.536E+5 mg) * (mg/SCF)

7.782E-07 lb/SCF

llb/hr =

(lb/SCF * WSCFM * 60 min/hr)

0.31 lb/hr

Eastmount Environmental Services, LLC UNCORRECTED CEM MONITORING RESULTS INSTRUMENTAL REFERENCE METHODS - 25A/18

CLIENT: / SITE: SOURCE:	Global RTO					CONDITION: RUN ID:	Normal RTO - Run 1
				Inlet	Outlet		
Date	Time	02	CO2	THC	THC		
Date	711110	%	%	ppm	ppm		
04 = 1 004		40.70	0.40	760.00	2.04		•
04-Feb-201		19.73	0.49	768.00	2.94		•
04-Feb-201		19.69	0.52	769.82	1.60		
04-Feb-201		19.68	0.52	769.42	1.15		
04-Feb-201	10 06:48	19.66	0.51	770.77	0.33		
04-Feb-201	10 06:49	19.40	0.77	780.57	0.11		
04-Feb-201	10 06:50	18.83	1.12	775.84	0.03		
04-Feb-201	10 06:51	18.84	1.09	778.53	0.10		
04-Feb-201		19.61	0.52	787.98	36.50	•	
04-Feb-201		19.67	0.51	772.29	3.56		
04-Feb-201		19.70	0.52	772.30	1.87		
					1.09		
04-Feb-201		19.71	0.52	772.76			
04-Feb-201		19.69	0.51	779.09			
04-Feb-201	10 06:57	19.70	0.54	778.79	0.13		
04-Feb-201	10 06:58	19.05	1.02	782.79	0.12		
04-Feb-201		18.82	1.12	799.92	0.18		
04-Feb-201		19.55	0.56	805.33	37.04		
04-Feb-201		19.64	0.54	819.91	3.60		
		19.61	0.55	820.28	1.83		
04-Feb-201							
04 - Feb-201		19.59	0.57	847.97	1.14		
04-Feb-201		19.57	0.58	883.20	0.29		
04-Feb-201	10 07:05	19.44	0.73	893.21	0.06		
04-Feb-201	07:06	18.69	1.23	905.53	0.15		
04-Feb-201		18.67	1.24	961.97	0.11		
04-Feb-201		19.32	0.72	1032.47	38.45	*	
					4.02		
04-Feb-201		19.52	0.64	1056.61			
04-Feb-201		19.52	0.62	1028.95	2.19		
04-Feb-201		19.50	0.65	1024.56	1.41		•
04-Feb-201	10 07:12	19.52	0.63	1030.04	1.12		
04-Feb-201		19.51	0.62	1000.71	0.05		
04-Feb-201		19.22	0.90	991.05	0.11		
04-Feb-201		18.70	1.19	989.85	0.05		
04-Feb-201		19.37	0.70	912.18	34.68		
04-Feb-201		19.63	0.58	809.19	3.93		
04-Feb-201	0 07:18	19.67	0.54	785.35	1.85		
04-Feb-201	07:19	19.65	0.55	771.53	1.04		
04-Feb-201		19.67	0.54	750.36	0.67		
04-Feb-201		19.65	0.57	748.82	0.06		
· ·		18.90	1.16	762.47	0.09		
04-Feb-201							•
04-Feb-201		18.81	1.19	762.57	0.37		•
04-Feb-201	0 07:24	19.39	0.71	768.62	32.71		
04-Feb-201	0 07:25	19.63	0.57	783.74	4.15		
04-Feb-201		19.59	0.58	806.61	2.21		•
04-Feb-201		19.60	0.59	805.32	1.25		
04-Feb-201		19.56	0.58	804.11	1.17		
				802.66	0.11		
04-Feb-201		19.51	0.60			•	
04-Feb-201		19.38	0.72	829.60	0.24		
04-Feb-201		18.65	1.20	818.73	0.27	•	•
04-Feb-201	0 07:32	19.13	0.77	815.59	30.97		*
04-Feb-201		19.43	0.59	817.34	4.59		
04-Feb-201		19.41	0.58	819.48	2.13		
04-Feb-201		19.37	0.59	802.01	1.04		
					0.88		
04-Feb-201		19.37	0.58	806.68			
04-Feb-201		19.36	0.56	788.68	0.24		
04-Feb-201	0 07:38	18.73	1.06	763.61	0.18		
04-Feb-201		18.49	1.20	758.17	0.29		
04-Feb-201		18.90	0.80	766.40	35.46		
		19.29	0.59	761.94	4.62		
04-Feb-201							
04-Feb-201		19.30	0.57	761.62	2.36		•
04-Feb-201		19.31	0.59	765.82	1.50		
04-Feb-201	0 07:44	19.27	0.57	760.90	1.13		
							/
	S:	19.36	0.71	827.68	5.21		*

Eastmount Environmental Services, LLC UNCORRECTED CEM MONITORING RESULTS INSTRUMENTAL REFERENCE METHODS: 25A/18

CLIENT: / SITE: SOURCE:	Global RTO					CONDITION: RUN ID:	Normal RTO - Run 2
				inlet	Outlet		
Date	Time	O2	CO2	THC	THC		
		%	%	ppm	ppm		
04-Feb-2010		19.72	0.64	789.55	5.83		
04-Feb-2010		19.72	0.64	813.26	2.37		
04-Feb-2010		19.92	0.64	826.89	1.23 0.97		
04-Feb-2010		20.10	0.64 0.64	850.37 876.72	0.97		
04-Feb-2010		20.14 19.66	1.02	886.23	0.00		
04-Feb-2010 04-Feb-2010		19.80	1.02	882.76	0.00		
04-Feb-2010		19.57	0.99	891.60	35.19		
04-Feb-2010		20.16	0.64	888.41	6.13		
04-Feb-2010		20.15	0.66	891.33	2.88		
04-Feb-2010		20.11	0.64	892.18	1.65		
04-Feb-2010		20.13	0.70	882.54	0.95		
04-Feb-2010		20.12	0.61	860.39	0.16		
04-Feb-2010		19.71	0.93	830.28	0.10		
04-Feb-2010	08:19	19.19	1.25	818.82	0.16		•
04-Feb-2010		19.92	0.67	830.63	36.79		
04-Feb-2010		20.03	0.61	834.72	3.51		
04-Feb-2010		20.10 20.05	0.62 0.60	837.35 838.28	1.68 1.13		
04-Feb-2010 04-Feb-2010	08:23 08:24	20.03	0.63	831.76	0.54		
04-Feb-2010		19.96	0.65	836.08	0.15		
04-Feb-2010		19.14	1.24	853.50	0.03		
04-Feb-2010		19.10	1.22	839.37	0.19		
04-Feb-2010	08:28	19.76	0.69	836.76	34.40		
04-Feb-2010	08:29	19.88	0.64	822.41	3.95		
04-Feb-2010	08:30	19.86	0.63	843.41	2.20		
04-Feb-2010	08:31	19.85	0.61 0.62	862.66 833.36	1.30 1.04		
04-Feb-2010 04-Feb-2010	08:32 08:33	19.89 19.90	0.62	833.91	0.21		
04-Feb-2010	08:34	19.59	0.89	846.52	0.05		
04-Feb-2010	08:35	19.03	1.22	839.58	0.16		
04-Feb-2010	08:36	19.70	0.73	839.31	36.24		•
04-Feb-2010	08:37	19.95	0.64	836.32	4.02		••
04-Feb-2010	08:38	20.01	0.65	840.26	1.93		
04-Feb-2010	08:39	20.04	0.63	833.65	1.20		
04-Feb-2010	08:40	20.07	0.63	821.12 811.16	0.89 0.18		
04-Feb-2010 04-Feb-2010	08:41 08:42	20.09 19.31	0.62 1.21	847.33	0.16		*
04-Feb-2010	08:43	19.16	1.28	845.82	0.13		
04-Feb-2010	08:44	19.78	0.81	902.61	36.15		
04-Feb-2010	08:45	20.07	0.66	941.10	4.36		
04-Feb-2010	08:46	20.07	0.69	934.73	2.25	4	
04-Feb-2010	08:47	20.12	0.68	940.08	1.55		
04-Feb-2010	08:48	20.15	0.65	954.37	1.13 0.24		·
04-Feb-2010 04-Feb-2010	08:49 08:50	20.17 20.17	0.68 0.74	944.11 936.27	0.24		
04-Feb-2010 04-Feb-2010	08:51	19.36	1.29	936.27	0.20		
04-Feb-2010	08:52	19.85	0.86	916.52	38.26		•
04-Feb-2010	08:53	20.23	0.67	926.27	4.81		
04-Feb-2010	08:54	20.21	0.67	910.11	2.24		
· 04-Feb-2010	08:55	20.24	0.67	888.16	1.24		•
04-Feb-2010	08:56	20.20	0.64	875.11	1.00		
04-Feb-2010	08:57	20.15	0.66	868.91	0.13		•
04-Feb-2010	08:58	19.64	1.05	864.16 861.32	0.18 0.15		
04-Feb-2010 04-Feb-2010	08:59 09:00	19.25 19.66	1.28 0.85	883.11	42.85		
04-Feb-2010	09:01	20.09	0.64	875.22	4.67		
04-Feb-2010	09:02	20.03	0.64	872.09	2.42		• •
04-Feb-2010	09:03	20.00	0.65	854.46	1.43		
04-Feb-2010	09:04	20.06	0.55	862.48	1.00		
		19.85	0.78	865.67	5.81		and the second second

Eastmount Environmental Services, LLC UNCORRECTED CEM MONITORING RESULTS INSTRUMENTAL REFERENCE METHODS - 254/18

CONDITION: Normal CLIENT: / SITE: Global RUN ID: RTO - Run 3 SOURCE: RTO Outlet Inlet THC THC 02 CO2 Date Time ppm % % ppm 832.13 36.52 04-Feb-2010 09:25 19.85 0.68 836.49 2.86 04-Feb-2010 09:26 19.95 0.66 830.87 1.40 20.00 0.68 04-Feb-2010 09:27 20.00 0.65 835.20 1.20 04-Feb-2010 09:28 0.45 04-Feb-2010 09.29 19.97 0.67 808.15 853 70 0.23 0.72 04-Feb-2010 09:30 19.96 19.14 1.27 838.35 0.19 04-Feb-2010 09:31 19.05 1.25 819.31 0.11 04-Feb-2010 09:32 38.07 0.65 845.08 04-Feb-2010 09:33 19.89 04-Feb-2010 09:34 19.87 0.65 828.44 3.54 19.88 0.66 835.44 1.89 04-Feb-2010 09:35 1 17 0.63 840.85 04-Feb-2010 09:36 19.82 839.96 0.84 04-Feb-2010 09:37 19.83 0.67 0.67 845.63 0.11 09:38 19.83 04-Feb-2010 0.21 04-Feb-2010 09:39 19.59 0.92 847.91 1.27 854.75 0.09 04-Feb-2010 09:40 18.95 0.68 859.75 35.74 19.68 04-Feb-2010 09:41 09:42 19.80 0.70 859.36 3 34 04-Feb-2010 874.52 1.62 04-Feb-2010 09:43 19.82 0.68 0.66 856.31 1.14 19.83 04-Feb-2010 09:44 04-Feb-2010 09:45 19.85 0.65 866.79 0.89 839.09 0.09 09:46 19.85 0.69 04-Feb-2010 849 47 0.07 04-Feb-2010 09:47 19.28 1.15 18.97 1.29 856.10 0.23 04-Feb-2010 09:48 09:49 19.68 0.74 856.56 79.57 04-Feb-2010 0.66 852.95 3.81 04-Feb-2010 09:50 19.90 0.66 844.12 2.14 04-Feb-2010 09:51 19.92 19.91 0.65 850.97 1.12 09:52 04-Feb-2010 841.01 04-Feb-2010 09:53 19.94 0.65 1.16 0.66 855.00 0.25 04-Feb-2010 09:54 19.90 19.86 0.75 851.07 0.11 09:55 04-Feb-2010 04-Feb-2010 09:56 18.97 1.32 854.99 0.18 877.22 36.78 04-Feb-2010 09:57 19.61 0.78 0.66 869.19 3.92 09:58 19.87 04-Feb-2010 09:59 19.86 0.66 837,22 1.84 04-Feb-2010 847.74 1.14 04-Feb-2010 10:00 19.84 0.66 0.66 866.38 0.94 19.84 04-Feb-2010 10:01 10:02 19.80 0.64 854.62 0.13 04-Feb-2010 04-Feb-2010 19.36 1.06 877.21 0.14 10:03 883.13 0.19 04-Feb-2010 10:04 18.86 1.31 10:05 19.49 0.77 867.67 34.14 04-Feb-2010 10:06 19.77 0.66 858.81 4.06 04-Feb-2010 2.15 04-Feb-2010 10:07 19.72 0.65 882.02 19.73 0.68 877.91 1.26 04-Feb-2010 10:08 19.73 0.67 893.97 1.22 04-Feb-2010 10:09 893.65 0.42 04-Feb-2010 10:10 19.73 0.66 0.67 891.66 0.24 04-Feb-2010 10:11 19.68 1 28 898.60 0.09 18.95 04-Feb-2010 10:12 34.83 10:13 19.37 0.85 891.42 04-Feb-2010 888.55 4.10 04-Feb-2010 10:14 19.73 0.69 19.75 0.67 897 95 1.79 04-Feb-2010 10:15 19.78 0.68 896.33 1.22 04-Feb-2010 10:16 1.10 19.82 0.68 891.41 04-Feb-2010 10:17 902.52 0.06 04-Feb-2010 10:18 19.88 0.68 19.56 1.00 886.94 0.11 04-Feb-2010 10:19 10:20 19.07 1.30 885.77 0.01 04-Feb-2010 47.43 880.29 04-Feb-2010 10:21 19.60 0.87 0.67 901.02 4.43 04-Feb-2010 10:22 19.96 20.04 0.67 869.53 2.32 10:23 04-Feb-2010 04-Feb-2010 1.33 10:24 20.05 0.65 861.45 19.69 0.79 861.51 6.80 **AVERAGES:**

Field	Crew Summa	ry								
Crew Member 1 - A. Seaha										
Crew Member 2 - M. Bruni										
Crew Member 3 -										
Crew Member 4 -										
Calibra Calibra	tion Error Test I	Data								
Calibration	Cylinder	Actual								
Gas	Concentration	Response								
Zero Gas	0	0								
High Gas	897	896								
Response Line 0.999										
Response	Line = (Ha-Za)/(Hc-Zc)								

THC/Analy	zer D	ata 💮 💮	
Manufacturer -		TECO	
Model/Serial Number -		51	
Fuel Pressure -		29	
Combustion Air Pressure -		30	
Sample Pressure -		9.0	
Range -	0	-	1,000
Calibrant (abases and vin	hav()	Propane	Х
Calibrant (choose one, x in	DOX)	Methane	0
Program Molecular We	ight:	44.09	g/mol

Rui	Summary		
Run No.	1	2	3
Start Time	6:45	8:05	9:25
Stop Time	7:45	9:05	10:25

1	Leshouse	Line - (Fla-Za)/(110-20)				
	Calibration Gas	Cylinder Concentration	Predicted Response	Actual Response	Calibration Error	Acceptance Criteria	
	Low Gas	300	300	300	0.1	< 5% of cylinder concentration	
	Mid Gas	508	507	516	1.7	< 5% of cylinder concentration	

Where:

Predicted Response = (Cylinder Concentration) x (Response Line)

Calibration Error = (Actual Response - Predicted Response) / Cylinder Concentration x 100

			Calibration Drift	Test Data	
Calibration Gas	Cylinder Concentration	Initial Test Response	Final Test Response	Calibration	Acceptance Criteria
Test Run 1 Zero	0	0	0	0.0	< 3% of the measurement range
Test Run 1 Mid	300	300	298	0.2	< 3% of the measurement range
					Test Run 1 Avg. Conc. 5.2
Test Run 2 Zero	0	0	0	0.0	< 3% of the measurement range
Test Run 2 Mid	300	300	293	0.7	< 3% of the measurement range
					Test Run 2 Avg. Conc. 5.8
Test Run 3 Zero	0	0	0	0.0	< 3% of the measurement range
Test Run 3 Mid	300	300	293	0.7	< 3% of the measurement range
				•.	Test Run 3 Avg. Conc. 6:8

Where:

Calibration Drift = (Final Test Response - Initial Test Response) * 100

Measurement Range

	Gas Cylinder Data											
Calibration Gas	Required %	Cylinder Concentration	Cylinder	Cylinder Number	- Expiration Date	Actual % of Span						
Fuel Combustion Air	١	N/A	UHP H2 UHP Air			N/A						
Zero Gas	0	0	UHP Air			0.0%						
Low Gas	25-35					0.0%						
Mid Gas	45-55					0.0%						
High Gas	80-90					0.0%						

CEMS System Response Time =

15 seconds

Method 25A Data Sheet

Client	CAA 10	Global Oil	_		THC Ana	alyzer Da	ata	
Facility	Chilse	1. MA	_	Manufacturer			TELO	
Source	RTO			Model/Serial Nu	ımber	\$1	146017	2-275
Test Location	Outle	+	- .	Fuel Pressure			29	
Date	2/4/10			Combustion Air	Pressure		3 <i>o</i>	
			.	Sample Pressur	re		9	
Calib	ration Error Test	Data		Measurement R	ange	0	- 1,000	Calt
Calibration	Cylinder	Actual		Response Time	•		15 Se	c
Gas	Concentration	Response			<u>Tes</u>	t Data		
Zero Gas	0	Ú	7	Test Number		1	2	3
High Gas	897	896		Start Time		645	805	925
Response Line	6.99			Stop Time	•	745	905	1025
Respon	se Line = (Ha/Za)/(Testers	**			
Calibration	Cylinder	Predicted	Actual	Calibration		Crit	eria	
Gas	Concentration	Response	Response	Error		Accep	tance	
Low Gas	300	300	300	0,1	< 5%	of cylinde	r concen	tration
Mid Gas	508	507	516	1.7	< 5%	of cylinde	r concen	tration
	Predic	ted Response =	(Cylinder Conce	entration) x (Resp	onse Line)			
(Calibration Error =	•				ration x 1	00	
***	30,9		32,1					
		Cai	ibration Drift T	est Data			.: -	
	f			h				

	30,9		32,1				
		Ca	libration Drift Te	est Data			
Calibration Gas	Cylinder Concentration	CE Test Response	Actual Response	Calibration Drift	Criteria Acceptance		
Test Run 1 Zero	0	Ø	0	0,0	< 3% of the mea	asurement range	
Test Run 1 Mid	300	300	298	0.2	< 3% of the mea	asurement range	
	30,9	<i>3</i> z,1	31.4		Test Run 1 Avg. Conc.	5.21	
Fest Run 2 Zero	0	0	0	0.0	< 3% of the mea	asurement range	
Test Run 2 Mid	300	300	293 0.87		< 3% of the mea	asurement range	
	30.9	32.1	31.9		Test Run 2 Avg. Conc.	5,81	
Fest Run 3 Zero	0	0	Ü	0.0	< 3% of the mea	surement range	
est Run 3 Mid	300	300	293	0.7	< 3% of the mea	surement range	
Calibrat	ion Drift = <u>(Actual</u> I	Response - CE Vleasurement Ra		* 100	Test Run 3 Avg. Conc.	6.80	

31.3

	Gas Cylinder Data										
Calibration Gas			Cylinder Composition	Cylinder Number	Expiration Date	Actual % of Span					
Fuel Combustion Air			UHP H2 UHP Air								
Low Gas	25 - 35	300	Calte/Air	(c192087		30,0					
Mid Gas	45 - 55	508		CC13336		50.8					
High Gas	80 - 90	897		LE 5920273A	, .	89.7					

B2 – Methane Measurements and Calibration Data

EMISSION RATE CALCULATION SHEET METHANE EMISSIONS

PLANT : Global RUN : Run 1
LOCATION : RTO Outlet DATE : 04-Feb-10

START TIME : 6:45 END TIME : 7:45

 AVERAGE CONCENTRATION
 2.5
 PPM

 AVERAGE FLOW RATE
 6665
 WSCFM

 MOLECULAR WEIGHT (METHANE)
 16.04
 g/mole

mg/m3 = (MW * PPM) / (24.055 l/mol. PPM) = 1.67 mg/m3

mg/SCF = (mg/m3) (m3/35.31 SCF) = 0.05 mg/SCF

lb/SCF = (1 lb/ 4.536E+5 mg) * (mg/SCF) = 1.041E-07 lb/SCF

lb/hr = (lb/SCF * WSCFM * 60 min/hr) = 0.04 lb/hr

EMISSION RATE CALCULATION SHEET METHANE EMISSIONS

PLANT : Global RUN : Run 2 LOCATION : RTO Outlet DATE : 04-Feb-10

START TIME: 8:05 END TIME: 9:05

AVERAGE CONCENTRATION	3.2	PPM
AVERAGE FLOW RATE	6896	WSCFM
MOLECULAR WEIGHT (METHANE)	16.04	g/mole

mg/m3 = (MW * PPM) / (24.055 l/mol. PPM) = 2.10 mg/m3

mg/SCF = (mg/m3) (m3/35.31 SCF) = 0.06 mg/SCF

lb/SCF = (1 lb/ 4.536E+5 mg) * (mg/SCF) = 1.311E-07 lb/SCF

lb/hr = (lb/SCF * WSCFM * 60 min/hr) = 0.05 lb/hr

EMISSION RATE CALCULATION SHEET METHANE EMISSIONS

PLANT : Global RUN : Run 3 LOCATION : RTO Outlet DATE : 04-Feb-10

START TIME : 9:25 END TIME : 10:25

AVERAGE CONCENTRATION	3.1	PPM
AVERAGE FLOW RATE	6634	WSCFM
MOLECULAR WEIGHT (METHANE)	16.04	g/mole

mg/m3 = (MW * PPM) / (24.055 l/mol. PPM) = 2.03 mg/m3

mg/SCF = (mg/m3) (m3/35.31 SCF) = 0.06 mg/SCF

lb/SCF = (1 lb/ 4.536E+5 mg) * (mg/SCF) = 1.27E-07 lb/SCF

lb/hr = (lb/SCF * WSCFM * 60 min/hr) = 0.05 lb/hr

Method 18 Data Sheet

Client	CAA / Global	GC Manufacturer		VIG-	
Facility	Chelsen, MA	Model/Serial Number	200		
Source	pto	Fuel Pressure		6	
Test Location	outlet	Combustion Air Pressure		6	
Date	2/4/10	Sample Pressure		1/ 3	
Testers	As, mB	Measurement Range	61.	100 CH	44
<u>Calibration</u> Low Gas	Gas Values 29.8	<u>Tes</u> Test Number	t Data 1	2	3
Mid Gas	50:0	Start Time	645	805	925
High Gas	86.2	Stop Time	745	905	1025

	Pre-Test Calibration				
Calibration	Injection	Injection	Injection	3 Injection	Criteria
Gas	1	2	3	Average	Acceptance
Low Gas	29,0	29,0	29.1		< 5% of mean value
Mid Gas	50,3	49.4	49.9		< 5% of mean value
High Gas	86.1	85.9	95.9		< 5% of mean value

			Test Data		
Calibration Gas	Cylinder Concentration	GC Response	Drift	Test Run Avg. Conc.	Criteria Acceptance
Test Run 1 Zero	0.0	8.2		25/25	< 5% of initial cal value
Test Run 1 Mid	29.8	29.1		25/25	< 5% of initial cal value
Test Run 2 Zero	0.0	0.2		22/21	< 5% of initial cal value
Test Run 2 Mid	29.8	29.2		3,2/3,1	< 5% of initial cal value
	-				
Test Run 3 Zero	0,0	0.2		121/22 L	< 5% of initial cal value
Test Run 3 Mid	29.8	29.2		3.1/3.0	< 5% of initial cal value
		P	ost-Test Calib	ration	
Calibration	Injection	Injection	Injection	3 Injection	Criteria
Gas	1 1	2	3	Average	Acceptance
Low Gas	29.2	29.0	29.0	29.1	< 5% of initial cal value
Mid Gas					< 5% of initial cal value
High Gas					< 5% of initial cal value

B3 - Flow Measurement Data

VOLUMETRIC FLOW CALCULATIONS

Client/Site:	Globai	· · · · · · · · · · · · · · · · · · ·	Run #:	Run 1
Source:	RTO Outlet		Date:	4-Feb-10

Trav. Point	Delta P	SQ Root Delta P	Stack Temp
A1	0.40	0.63	112
2	0.47	0.69	151
3	0.49	0.70	165
4	0.48	0.69	191
5	0.53	0.73	212
6	0.45	0.67	226
B1	0.44	0.66	228
2	0.48	0.69	263
3	0.56	0.75	297
4	0.42	0.65	136
5	0.52	0.72	111
6	0.54	0.73	98
Average	0.48	0.69	182.5

Average Delta P	0.48
Average Stack Temp	182.5
Bwo (via mod. M4)	0.010
Barometric Press	30.0
P Static	-0.39
% CO2	0.55
% O2	19.66
% CO	0
% N2	79.8
Stack Dia (ft)	2.00
L	0.00
W	0.00
Stack Area	3.14 sq ft
Ср	0.84
Md	28.87
Ms	28.77

G	0.86	
VS	42.97	FPS
	395,979	DSCFH
	399,902	WSCFH
Qs .	6,665	WSCFM
	6,600	DSCFM
	8,100	ACFM

Equations:

Ts = Temp Stack + 460

Ps = Pstatic/13.6 + Bp

Md = .44 CO2 +.32 O2 + .28 CO +.28 N2

Ms = Md(1-Bwo)+18(Bwo)

G = Sqrt(Ts/Ps/Ms)

Vs = 85.9(Cp)(G)(Ave Sqrt Delta P)

 $As = either D^2(PI)/4 or (L)(W)$

Qs = 3600(1-Bwo)(Vs)(As)17.64(Ps)/(Ts)

VOLUMETRIC FLOW CALCULATIONS

Plant:	Global	Run#:	Run 2
Location:	RTO Outlet	Date:	4-Feb-10

Trav. Point	Delta P	SQ Root Delta P	Stack Temp
A1	0.38	0.62	80
2	0.42	0.65	82
3	0.45	0.67	86
4	0.40	0.63	88
5	0.43	0.66	98
6	0.42	0.65	105
B1	0.38	0.62	132
2	0.42	0.65	157
3	0.47	0.69	173
4	0.60	0.77	202
5	0.72	0.85	220
6	0.74	0.86	253
Average	0.49	0.69	139.7

Average Delta P		0.49
Average Stack Temp		139.7
Bwo (via mod M4)		0.013
Barometric Press	- 1	30.0
P Static	-	0.30
% CO2		0.55
% O2		20.08
% CO		0
% N2		79.4
Stack Dia (ft)		2.00
L		0.00
w		0.00
Stack Area		3.14 sq ft
Ср		0.84
Md	: -	28.89
Ms		28.75

G	0.83	
vs	41.43	FPS
	408,368	DSCFH
	413,772	WSCFH
Qs	6,896	WSCFM
	6,806	DSCFM
	7,809	ACFM

Equations:

Ts = Temp Stack + 460

Ps = Pstatic/13.6 + Bp

Md = .44 CO2 +.32 O2 + .28 CO +.28 N2

Ms = Md(1-Bwo)+18(Bwo)

G = Sqrt(Ts/Ps/Ms)

Vs = 85.9(Cp)(G)(Ave Sqrt Delta P)

As = either D^2(PI)/4 or (L)(W)

Qs = 3600(1-Bwo)(Vs)(As)17.64(Ps)/(Ts)

VOLUMETRIC FLOW CALCULATIONS

Plant: Global Run #: Run 3
Location: RTO Outlet Date: 4-Feb-10

Trav. Point	Delta P	SQ Root A	Stack Temp
A1	0.48	0.69	110
2	0.48	0.69	121
3	0.41	0.64	139
4	0.44	0.66	155
5	0.46	0.68	168
6	0.44	0.66	174
B1	0.46	0.68	200
2	0.50	0.71	226
3	0.51	0.71	266
4	0.48	0.69	274
5	0.62	0.79	284
6	0.61	0.78	295
Average	0.49	0.70	201.0

Average Delta P	0.49
Average Stack Temp	201.0
Bwo	0.008
Barometric Press	30.0
P Static	0.30
% CO2	0.49
% O2	19.66
% CO	0.00
% N2	79.9
Stack Dia (ft)	2.00
L	0.00
W	0.00
Stack Area	3.14 sq ft
Ср	0.84
Mid	28.86
Ms	28.77

G	0.87	
VS	43.93	FPS
	394,726	DSCFH
	398,041	WSCFH
Qs	6,634	WSCFM
	6,579	DSCFM
. '	8,280	ACFM

Equations:

Ts = Temp Stack + 460

Ps = Pstatic/13.6 + Bp

Md = .44 CO2 +.32 O2 + .28 CO +.28 N2

Ms = Md(1-Bwo)+18(Bwo)

G = Sqrt(Ts/Ps/Ms)

Vs = 85.9(Cp)(G)(Ave Sqrt Delta P)

 $As = either D^2(PI)/4 or (L)(W)$

Qs = 3600(1-Bwo)(Vs)(As)17.64(Ps)/(Ts)

MOISTURE CALCULATIONS

PLANT:	Global	RUN#: Run 1
LOCATION:	RTO Outlet	DATE: 4-Feb-10

IMP-1 (INT) :	293
IMP-2 (INT) :	0
IMP-3 (INT) :	0
IMP-4 (INT) :	0
IMP-1 (FIN) :	293.5
IMP-2 (FIN) :	0.0
IMP-3 (FIN) :	0
IMP-4 (FIN) :	0
Pump #	N/A
Meterbox Y:	N/A
Pbar	30.0
TEST LENGTH	60
SAMPLE VOL (L)	67.278
SAMPLE VOL (M3)	0.06728
SAMPLE VOL (FT3)	2.376
BEGIN TIME	6:45
I .	

7:45

END TIME

VI tot =	IMP-1,2,3,4 (FIN) - IMP-1,2,3,4 (INT)	· =	0.5 ml
Vm =	n/a	: := :	
Vm std =			2.376 dsc
Vw std≔	0.04707 (VI TOT)	:=	0.024 wcf
BWO =	Vw std / (Vw std) + (Vm std)	=	0.010
1-BWO =		: =	0.990
%⊸Moistu	re =		0.98 %

MOISTURE CALCULATIONS

PLANT:	Global	RUN#: Run 2
LOCATION:	RTO Outlet	DATE: 4-Feb-10

295.5
0
0
0
296.0
0
0
0
N/A
N/A
30.0
60
50.358
0.05036
1.778
8:05
9:05

VI tot =	IMP-1,2,3,4 (FIN) - IMP-1,2,3,4 (INT)		0.5 ml
Vm =	n/a		
Vm std =			1.778 dscf
Vw std =	0.04707 (VI TOT)		0.024 wcf
BWO =	Vw std / (Vw std) + (Vm std)		0.013
1-BWO =		** = -4,	0.987
% Moistu	re =	=	1.31 %

MOISTURE CALCULATIONS

PLANT:	Global	 RUN #: Run 3
LOCATION:	RTO Outlet	DATE: 4-Feb-10

IMP-1 (INT) :	296.0
IMP-2 (INT) :	0
IMP-3 (INT) :	0
IMP-4 (INT) :	0
IMP-1 (FIN) :	296.5
IMP-2 (FIN) :	0
IMP-3 (FIN) :	0
IMP-4 (FIN) :	0
Pump #	N/A
Meterbox Y:	N/A
Pbar	30.0
TEST LENGTH	60
SAMPLE VOL (L)	79.352
SAMPLE VOL (M3)	0.07935
SAMPLE VOL (FT3)	2.802
BEGIN TIME	9:25
END TIME	10:25

VI tot =	IMP-1,2,3,4 (FIN) - IMP-1,2,3,4 (INT)		0.5 ml
Vm =	n/a	=	•
Vm std =			2.802 dsc1
Vw:std =	0.04707 (VI TOT)	.=	0.024 wcf
BWO =	Vw std / (Vw std) + (Vm std)	= ,	0.008
1-B W O =			0.992
% ∃Moistu	re =	.: =	0.83 %

Analyzer Calibrations

PLANT:	Global		
LOCATION:	RTO Outlet	DATE:	4-Feb-10

Diluent/Pollutant	O ₂	CO ₂		
Analyer Range	20.91	18.80		
Zero Response	0.28	0.10		
Calibration Error (% of Span)	1.34	0.53		
Cylinder Value (Mid)	10.85	9.70		
Analyzer Response (Mid)	11.10	9.73		,
Calibration Error (% of Span)	1.20	0.16		<u>. </u>
Cylinder Value (High)	20.91	18.80		
Analyxer Response (High)	20.99	18.84		
Calibration Error (% of Span)	0.38	0.21		
PASS - FAIL	PASS	PASS		
ZERO	0.28	/0.10	1	
Use Mid or High Span (M or H)	M	M		
SPAN	11.10	9.73		

CEMS Calibrations and Calculations Sheet

PLANT : Global RUN # : Run 1
LOCATION : RTO Outlet DATE : 4-Feb-10

 GAS

 START TIME :
 6:45

 END TIME :
 7:45

Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)	
Operating Range =	20.91	18.8	
Analyzer Zero Response =	0.28	0.10	
Analyzer Span Response =	11.10	9.73	
Sytem Zero Response (Initial) =	0.46	0.15	
System Zero Response (Final) =	0.45	0.18	
Average Zero Response (C _o) =	0.46	0.17	
Sytem Span Response (Initial) =	11.01	9.69	
System Span Response (Final) =	10.77	9.76	
Average Span Response (C _m) =	10.89	9.73	
Calibration gas values (C _{ma}) =	10.85	9.70	
System Bias and Drift Calculations:	0.00	0.07	
Zero Bias (Initial) =	0.86	0.27	
Zero Bias (Final) =	0.81	0.43	,
Zero Drift =	0.05	0.16	
Span Bias (Initial) =	0.43	0.21	
Span Bias (Final) =	1.58	0.16	
Span Drift =	1.15	0.37	
Uncorrected Ave. (C) =	19.36	0.71	
preceded Ave.= $C_{gas} = (\overline{C} - C_o)(C_{ma}/(C_m - C_o)) =$	19.66	0.55	

CEMS Calibrations and Calculations Sheet

PLANT : Global RUN # : Run 2 LOCATION : RTO Outlet DATE : 4-Feb-10

GAS | START TIME : 8:05 | END TIME : 9:05

				7	
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)			
Operating Range =	20.91	18.8			
Analyzer Zero Response =	0.28	0.10			
Analyzer Span Response =	11.10	9.73			
Sytem Zero Response (Initial) =	0.45	0.18			
System Zero Response (Final) =	0.51	0.30			
Average Zero Response (C _o) =	0.48	0.24			
Sytem Span Response (Initial) =	10.77	9.76			
System Span Response (Final) =	11.12	9.81			
Average Span Response (C _m) =	10.95	9.79			
Calibration gas values (C _{ma}) =	10.85 \	9.70			
System Bias and Drift Calculations:					
Zero Bias (Initial) =	0.81	0.43	. •		
Zero Bias (Final) =	1.10	1.06			
Zero Drift =	0.29	0.64			
Span Bias (Initial) =	1.58	0.16			
Span Bias (Final) =	0.10	0.43			
Span Drift =	1.67	0.27			
<u></u>					
Uncorrected Ave. $(\overline{C}) = $	19.85	0.78			
Corrected Ave.= $C_{gas} = (\overline{C} - C_o)(C_{ma}/(C_m - C_o)) =$	20.08	0.55			
John Collect / Web Longas (G. Col) (Gillar (Gilli Go) /					

CEMS Calibrations and Calculations Sheet

RUN#: Run 3 DATE: 4-Feb-10 PLANT : Global LOCATION : RTO Outlet PLANT

GAS 9:25

START TIME : END TIME : 10:25

Diluent/Pollutant:	O ₂ (%)	$CO_{2}(\%)$		
Operating Range =	20.91	18.8	Þ	
Analyzer Zero Response =	0.28	0.10		
Analyzer Span Response =	11.10	9.73		
Sytem Zero Response (Initial) =	0.51	0.30		
System Zero Response (Final) =	0.46	0.32		
Average Zero Response (C _o) =	0.49	0.31		
Sytem Span Response (Initial) =	11.12	9.81		
System Span Response (Final) =	11.05	9.91		
Average Span Response (C _m) =	11.09	9.86		
Calibration gas values (C _{ma}) =	10.85	9.70		
System Bias and Drift Calculations:				
Zero Bias (Initial) =	1.10	1.06		
Zero Bias (Final) =	0.86	1.17		
Zero Drift =	0.24	0.11		
Span Bias (Initial) =	0.10	0.43		
Span Bias (Final) =	0.24	0.96		
Span Drift =	0.33	0.53		
Uncorrected Ave. (C) =	19.69	0.79		
·				

EASTMOUNT ENVIRONMENTAL SERVICES Air Quality Specialists

EPA Method 2 Field Data Sheet

Client	: CAN/	Glubal
Site Location	Chels	ec MA
Source	RT	<u>ט</u>
Test Location		et
Duct Diameter:	24	(
Test Number:	1 -	
Test Time:	645-	
Test Date:	214	110
Testers:	As,	MB
	<u> </u>	
Pitot Number:	5-6	<u> </u>
Pitot Coefficient:		
Ambient Temperature:	24	
Wet Bulb Temp:	_	
Barometric Pressure:	30.0	
Duct Static Pressure:	-0:3	વ
	Pre .	/ Post
Leak Checks:	6.0	1 0.0
Pump Ca	alibration /	Reading
	Initial	Final
1	0,000	67.278
2		
3	\	
Impinger	Volume	
1	293,0	293.5
2		
3	· \	`

Port Number	Traverse Point	Velocity Pressure	Stack Temp.
Number	Polit	riessule	
A	ĺ	0,40	112
	2	.47	151
	3	.49	145
	ų	.48	191
	5	- ,53	212
	6	,45	226
B	1	.44	228
	2	,48	263
	3	.56	297
	Ý	.42	136
	5	152 X	111
	6	154	98
		_	
	4.		
	"		

EASTMOUNT ENVIRONMENTAL SERVICES Air Quality Specialists

EPA Method 2 Field Data Sheet

Client	CHALG	-lobal 0:1
Site Location:	Chelsen, MA	
Source:	RTO	>
Test Location:	1400	<u>(</u>
Duct Diameter:	24	
Test Number:	ATO-	Run Z
Test Time:	005-	
Test Date:	2/4/	10
Testers:	AS.	MB
Pitot Number:	S-6	(:
Pitot Coefficient:	0.84	
Ambient Temperature:	20	
Wet Bulb Temp:		
Barometric Pressure:	30.0	
Duct Static Pressure:	-0.40	
	Pre /	Post /
Leak Checks:	0:0	1 5.0
Pump Ca	libration	
	Initial	Final
1	B.600	50.358
2	$\overline{}$	
3		
Impinger	Volume	
1	295.5	2960
. 2		
3	•	`

			T
Port Number	Traverse Point	Velocity Pressure	Stack Temp.
A	į	38	80
	7_	,42	82
	3	.45	36
	4	,40	68
	5	,43	98
	6	.42	105
B	f '	,38	132
	2	,42	157
	3	.47	173
		, lo	202
	- 5	,72	220
	<u>ا</u>	.74	253
	-		
·			

EASTMOUNT ENVIRONMENTAL SERVICES Air Quality Specialists

EPA Method 2 Field Data Sheet

Client:	CAA/G	sea, ma
Site Location:	Chel	sen, ma
Source:	RTO	
Test Location:	007	hit
Duct Diameter:	24	1"
Test Number:	RTO-	
Test Time:	925-	
Test Date:	2/4	1/10
Testers:	AS	, MB
Pitot Number:	5-6	- 1
Pitot Coefficient:	0.8	4
Ambient Temperature:	30	
Wet Bulb Temp:		
Barometric Pressure:	30.	0
Duct Static Pressure:	-0.3	8
	Pre /	
Leak Checks:	0.0	100
Pump Ca	alibration	
	Initial	Final
1	0.000	79.352
2		
3		``
Impinger	Volume	
1	296.0	296.5
2		
3	`	

Port Number	Traverse Point	Velocity Pressure	Stack Temp.
A	l	.48	110
		,48	121
	2	:41	139
	4	,44	135
	5	, 46	168
	lo	,44	174
<u>B</u>	(,46	200
	2	,50 ,51	226
	2 3 4 5		266
	4	,48	274
	5		284
	6	١٥١	295
<u> </u>			
			
		·	

Client/Site:

CAA / Glubal Oil

R10

Source:

Upscale (seconds):

RM Response Time:

2/4/10 Operator: Date:

Downscale (seconds):

Note: System Response Time is the longer of the upscale and downscale response times. Performed during initial zero and bias checks:

Analyzer Calibration Error (ACE) - Reference Method

High/Full Scale (CS)	Analyzer Response (C _{DIR})	20.99	18.81		
High/Full	Cylinder Value (C _v)	20.91	18.80		
<u>v</u>	Analyzer Response (C _{DiR})	Chi 10.10	9.73		
Mid	Cylinder Value (C ₃)	10.85	9.30		
W	Analyzer Response (C _{DIR})	6.28	01.9		
Low	Cylinder Value (C _v)	0.00	0.00		
Pollutant/Dilliont		Grygen	Carbon Dioxide		

Range selected for analyzer operation:

SO ₂	
NOX	l
©O	!
.co ₂	20%
0,	7.57

Analyzer Calibration Error (ACE) Acceptance Criteria: ≤±2%

Where: $ACE = [(C_{Dir} - C_v)/CS] * 100\%$

Protocol Gases Used During Program:

Cylinder No.	Diluent/Pollutant Concentrations(s)
(625517	20.91 02 / 18.80 (0)
C313422	10.3502/9.70 CO2
	-

Operator:				
CAA (Global O;1	RID		RTU- Run/	645
Client/Site:	Source:	A company	Run Number:	Start Time:

End Time:

344

System Bias (SB)/Driff (D) Assessments – Reference Method

Final Špan (G _{wA})	ပ်	FF 8/ \$8.01			
Final Zero	Analyzer Response (C _S)	Sh'o	9.00		
6 C L C C C C C C C C C C	Cylinder V (Cv)	0,00	0,00		
Start Span (G _{MA})	Analyzer Response (Cs)	11.01	9.69		
Start Sp	Cylinder Value (Cv)	10.85	63		
Start Zero	Analyzer Response (Cs)	94.0	51.0		
Start	Cylinder Value (Cv)	0.00	00.0		
PollutantDiluent		Orygen	Carbun Dioxide		

Range selected for analyzer operation:

803	1	
XON		
CO		
202	20%	
02	25.	•

Sampling System Bias (SB) Criteria: <± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dir})/CS] * 100\%$

Zero and Calibration Drift (D) Criteria: <= 3% of span, where

 $D = |SB_{finel} - SB_i|$

Operator:	Date:
CAM / Global	RTO
Client/Site:	Source:

Run Number: RTO- Run2

Start Time: 605

End Time: 905

System Bias (SB)/Drift (D) Assessments – Reference Method

					 	T-	_
an (G _{MA})	Analyzer Response (C _S)	11.12	186	100			
Final Span (GwA)	Cylinder Value (Cv)	10.85	9.70				
Final Zero	Analyzer Response (C _S)	0.51	0.30				
E LILE	Cylinder Value (Cv)	0, co	0.00				
Stärt Spån (C _M A)	Analyzer Response (C _S)	66.01	9.76				
Start Sp	Gylinder Value (C√)	10.85	0±3				
Zero	Analyzer Response (Cs)	ø.45	6.18				
Start Zero	Cylinder Value (Cy)	0,00	0,00				
Pollutan/Dilliont		Orygen	Cabon Divrible				

Range selected for analyzer operation:

\$0°2	١	
NOX	(
CO		
CO ₂	10.7	
02	12.	

Sampling System Bias (SB) Criteria: <= 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dir})/CS] * 100\%$

Zero and Calibration Drift (D) Criteria: <+ 3% of span, where

 $D = |SB_{final} - SB_i|$

Operator: Date: CAA GELDA Client/Site: Source:

Run Number: <u>270 - Run S</u>tart Time: 925

520/

End Time:

System Bias (SB)/Drift (D) Assessments – Reference Method

ай (С _{МА})	Analyzer Response (Cs)	1	150				
Final Spari (C _{MA})	Cylinder Value (C _v)	10.85	9.70				
Final Zero	Ánalyzer Response (C _S)	24.0	6.87				-
Hinal	Cylinder Value (C _v)	0,00	0.00				
Start Span (G _{MA})	Analyzer Response (Cs)	11.12	9.81		·		
Start Sp	Gylinder Value (C _V)	1085	9.70				
Start Zero	Analyzer Response (C _s)	15.0	6.34				
Start	Cylinder Value (C _V)	0.00	6.00				
Pollutant/Dituent		Orlgen	Laber Dirick				
llod		0	Carbe				

Range selected for analyzer operation:

\$0°5	1	
ŠON.		
00.		
² 00	roj.	
02	1.52	

Sampling System Bias (SB) Criteria: <± 5% of span for zero and upscale gas, where:

Where: SB = [(C_s -C_{Dir})/CS] * 100%

Zero and Calibration Driff (D) Criteria: ≤± 3% of span, where

 $D = |SB_{final} - SB_i|$

B4 - Sulfur Results

RESULTS OF ANALYSIS

Page 1 of 1

Client: CA Associates Client Sample ID: INLET RUN 1 Client Project ID: Global RTO / 09-017

CAS Project ID: P1000755 CAS Sample ID: P1000755-001

Test Code: ASTM D 5504-08

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Zheng Wang Sampling Media: 1.0 L Zefon Bag

Test Notes:

Time Collected: 13:56 Date Received: 3/4/10 Date Analyzed: 3/4/10 Time Analyzed: 08:24

> Volume(s) Analyzed: $1.0 \, \text{ml(s)}$

Date Collected: 3/3/10

CAS#	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
7783-06-4	Hydrogen Sulfide	μg/m 11	7.0	8.2	5.0	Qualifici
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	39	9.8	20	5.0	
75-08-1	Ethyl Mercaptan	27	13	10	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	83	17	24	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	59	9.6	15	2.5	
616-44-4	3-Methylthiophene	110	20	26	5.0	
110-01-0	Tetrahydrothiophene	32	18	8.9	5.0	
638-02-8	2,5-Dimethylthiophene	39	23	8.4	5.0	
872-55-9	2-Ethylthiophene	52	23	11	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
	ACCUST 17 17 17 17 17 17 17 17 17 17 17 17 17

RESULTS OF ANALYSIS

Page 1 of 1

Client: CA Associates
Client Sample ID: INLET RUN 2
Client Project ID: Global RTO / 09-017

CAS Project ID: P1000755 CAS Sample ID: P1000755-002

Test Code: ASTM D 5504-08

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Zheng Wang Sampling Media: 1.0 L Zefon Bag

Test Notes:

ilent 6890A/GC13/SCD
Time Collected: 14:10
eng Wang
Date Received: 3/4/10
Date Analyzed: 3/4/10
Time Analyzed: 08:46

Volume(s) Analyzed: 1.0 ml(s)

Date Collected: 3/3/10

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By	v.	Date:
V CITITE G D	/ ·	Date

RESULTS OF ANALYSIS

Page 1 of 1

Client: CA Associates Client Sample ID: INLET RUN 3 Client Project ID: Global RTO / 09-017

CAS Project ID: P1000755 CAS Sample ID: P1000755-003

Date Collected: 3/3/10

Time Collected: 14:20

Date Received: 3/4/10

Date Analyzed: 3/4/10

Test Code: ASTM D 5504-08

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Zheng Wang Sampling Media: 1.0 L Zefon Bag

Test Notes:

Time Analyzed: 09:08

Volume(s) Analyzed: $1.0 \, \text{ml(s)}$

CAS#	Compound	Result	MRL	Result	MRL	Data Qualifier
7783-06-4	Hydrogen Sulfide	μg/m³ ND	$\frac{\mu g/m^3}{7.0}$	ppbV ND	ppbV 5.0	Qualifier
	•					
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:		_
		_	

RESULTS OF ANALYSIS Page 1 of 1

Client: CA Associates
Client Project ID: Global RTO / 09-017

CAS Project ID: P1000755

Total Reduced Sulfur as Hydrogen Sulfide

Test Code: ASTM D 5504-08

Instrument ID: Agilent 6890A/GC13/SCD Date(s) Collected: 3/3/10
Analyst: Zheng Wang Date Received: 3/4/10
Sampling Media: 1.0 L Zefon Bag(s) Date Analyzed: 3/4/10

Test Notes:

		Injection						
Client Sample ID	CAS Sample ID	Volume	Time	Result	MRL	Result	MRL	Data
		ml(s)	Analyzed	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
INLET RUN 1	P1000755-001	1.0	08:24	460	7.0	330	5.0	
INLET RUN 2	P1000755-002	1.0	08:46	ND	7.0	ND	5.0	
INLET RUN 3	P1000755-003	1.0	09:08	ND	7.0	ND	5.0	
Method Blank	P100304-MB	1.0	07:34	ND	7.0	ND	5.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	

Copy of P1000755_ASTM5504 (2) - Sulfur

RESULTS OF ANALYSIS

Page 1 of 1

Client: CA Associates Client Sample ID: Method Blank Client Project ID: Global RTO / 09-017

CAS Project ID: P1000755 CAS Sample ID: P100304-MB

Date Collected: NA

Test Code: ASTM D 5504-08

Instrument ID:

Analyst: Zheng Wang Sampling Media: 1.0 L Zefon Bag

Test Notes:

Agilent 6890A/GC13/SCD Time Collected: NA Date Received: NA Date Analyzed: 3/04/10 Time Analyzed: 07:34

> Volume(s) Analyzed: $1.0 \, \text{ml(s)}$

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	_
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
	ACCUST 17 17 17 17 17 17 17 17 17 17 17 17 17